
	 	 	 	 	 	 	 	
	
Rama	Ramakrishnan	(@rama100)	 	 	 	 	 	 	 												June	5,	2017	

*	The	first	one-liner	is	for	tab-delimited	files,	the	second	for	comma-delimited	files,	and	the	third	for	space-delimited	files.	
	

	

Handy	Command-line	One-liners	for	Starting	Data	Scientists	
(from	https://medium.com/@rama100/handy-command-line-one-liners-for-starting-data-scientists-81f933241128)	

	
Category	 Task	 One-Liner	 Comments	
File	
exploration	

Count	the	number	of	lines	in	a	file	 wc	-l	filename	 	
Show	the	column	names,	one	in	each	line,	
preceded	by	line	numbers	(i.e.,	grab	the	header	
row,	transpose	it	and	prefix	line	numbers)*	

head	-1	filename	|	tr	‘\t’	‘\n’	|	nl	
head	-1	filename	|	tr	‘,’	‘\n’	|	nl	
head	-1	filename	|	tr	‘	’	‘\n’	|	nl	
	

Helpful	when	you	have	numerous	columns	in	a	new	
file	and	want	to	get	the	lay	of	the	land	e.g.,	knowing	
that	“average_selling_price”	is	column	#	39	is	useful	
for	some	of	the		examples	below.	

Page	through	the	file,	showing	line	numbers		 less	filename	|	nl	 	
Row-
oriented	
operations	

Show	line	#4212	 sed	‘4212q;d’	filename	 Very	useful	when	you	are	trying	to	load	the	file	into	a	
database	and	the	load	fails	at	line	#4212,	for	instance.	
Also,	this	command	will	conveniently	quit	after	
printing	the	4212nd	line;	very	considerate	if	your	file	
has	a	million	lines!	

Show	lines	with	“foo”	in	any	field	
show	lines	with	“foo”	in	any	field,	ignoring	case	

grep	’foo’	filename	
grep	-i	‘foo’	filename	

	

Show	lines	with	‘foo’	in	field	#18*	 awk	-F\t	‘$18	==	“foo”	’	filename	
awk	-F,	‘$18	==	“foo”	’	filename	
awk	‘$18	==	“foo”	’	filename	

	

Show	rows	that	have	fewer	fields	than	the	
header	row	

awk	‘NR==1	{x=NF};	NF	<	x’	filename	
	

Quick	check	to	see	if	any	rows	are	incomplete	

Remove	lines	with	“foo”	in	any	field	and	save	
the	rest	into	a	new	file	

sed	’/foo/d’	filename	>	newfile	 	

Remove	lines	with	‘foo’	in	field	#18	and	save	
the	rest	into	a	new	file*	

awk	-F\t	‘$18	!=	“foo”	’	filename	>	newfile	
awk	-F,	‘$18	!=	“foo”	’	filename	>	newfile	
awk	‘$18	!=	“foo”	’	filename	>	newfile	

	

Remove	the	first	line	and	save	the	rest	into	a	
new	file	

sed	‘1d’	filename	>	newfile	 Great	for	stripping	a	header	row	before	further	
processing	

Remove	the	first	8	lines	and	save	the	rest	into	a	
new	file	

sed	‘1,8d’	filename	>	newfile	
	

	

Remove	line	#42	and	save	the	rest	into	a	new	
file	

sed	‘42d’	filename	>	newfile	 	

Remove	lines	233	to	718	and	save	the	rest	into	
a	new	file	

sed	‘233,718d’	filename	>	newfile	 	

	 	 	 	 	 	 	 	
	
Rama	Ramakrishnan	(@rama100)	 	 	 	 	 	 	 												June	5,	2017	

*	The	first	one-liner	is	for	tab-delimited	files,	the	second	for	comma-delimited	files,	and	the	third	for	space-delimited	files.	
	

Remove	the	last	line	and	save	the	rest	into	a	
new	file	

sed	‘$d’	filename	>	newfile	 	

Remove	the	last	8	lines	and	save	the	rest	into	a	
new	file	

sed	-e	:a	-e	‘$d;N;2,8ba’	-e	‘P;D’	filename	>	
newfile	

Ugh!	Let	me	know	if	you	know	of	a	better	way	

Remove	blank	lines	from	the	file	and	save	the	
rest	into	a	new	file	

sed	‘/^$/d’	filename	>	newfile	 	

Remove	duplicate	lines	and	save	the	rest	into	a	
new	file,	preserving	the	original	order	

awk	‘!seen[$0]++’	filename	>	newfile	 	

Remove	duplicate	lines	and	save	the	rest	into	a	
new	file,	original	order	may	not	be	preserved	

sort	-u	filename	>	newfile	 	

Remove	lines	with	a	missing	value	in	field	#18	
and	save	the	rest	into	a	new	file*	

awk	-F\t	‘!$18’	filename	>	newfile	
awk	-F,	‘!$18’	filename	>	newfile	
awk	‘!$18’	filename	>	newfile	

	

Column-
oriented	
operations	

Show	just	col	#42*	 cut	-f42	filename	
cut	-d,	-f42	filename	
cut	-d’	‘	-f42	filename	

	

Show	the	unique	values	in	column	#42	with	
counts*	

cut	-f42	filename	|	sort	|	uniq	-c	
cut	-d,	-f42	filename	|	sort	|	uniq	-c	
cut	-d’	‘	-f42	filename	|	sort	|	uniq	-c	

Useful	for	understanding	a	categorical	field.	A	
histogram,	essentially.		

Remove	the	1st	field	and	save	the	rest	into	a	
new	file*	

cut	-f2-	filename	>	newfile	
cut	–d,	-f1–18,43-	filename	>	newfile	
cut	–d’	‘	-f1–18,43-	filename	>	newfile	

	

Remove	field	#42	and	save	the	rest	into	a	new	
file*	

cut	-f1–41,43-	filename	>	newfile	
cut	–d,	-f1–41,43-	filename	>	newfile	
cut	–d’	‘	-f1–41,43-	filename	>	newfile	

	

Remove	fields	#19–42	and	save	the	rest	into	a	
new	file*	

cut	-f1–18,43-	filename	>	newfile	
cut	–d,	-f1–18,43-	filename	>	newfile	
cut	–d’	‘	-f1–18,43-	filename	>	newfile	

	

Combining/	
splitting	files	

Stack	files	column-wise	 paste	file1	file2	>	newfile	 Useful	if	you	have	two	or	more	files	with	the	same	
rows	but	different	sets	of	columns	and	you	need	to	
combine	them	side-by-side	

Stack	files	row-wise	 cat	file1	file2	>	newfile	 Useful	if	you	have	two	or	more	files	with	the	same	
columns	and	you	need	to	‘pancake’	stack	them.	
Assumes	file2	doesn’t	have	a	header	row.	If	it	does,	
first	remove	it	using	a	one-liner	:-)	

Split	a	file	into	two	files	with	3000	rows	in	the	
first	file	and	the	rest	in	the	second	

csplit	-sf	prefix	filename	3001	 Useful	for	train/test	splitting	(the	resulting	files	will	be	
prefixed	with	whatever	you	specify	as	‘prefix’)	

	 	 	 	 	 	 	 	
	
Rama	Ramakrishnan	(@rama100)	 	 	 	 	 	 	 												June	5,	2017	

*	The	first	one-liner	is	for	tab-delimited	files,	the	second	for	comma-delimited	files,	and	the	third	for	space-delimited	files.	
	

Random	
selection	

Randomly	shuffle	the	rows	and	save	to	a	new	
file	

awk	‘BEGIN{srand();}{print	rand()”\t”$0}’	
filename	|	sort	-k1	-n	|	cut	-f2-	>	newfile	

	

Randomly	choose	X%	of	rows	and	save	to	a	
new	file	(X=	10%	in	the	code	snippet)	

awk	-v	X=10	‘BEGIN	{srand()}	rand()	<=	
0.01*X’	filename	>	newfile	

	

Select	every	10th	row	and	save	to	a	new	file	 awk	‘NR%10’	filename	>	newfile	 	

	

